Frames, Modular Functions for Shift-invariant Subspaces and Fmra Wavelet Frames

نویسندگان

  • QING GU
  • DEGUANG HAN
  • David R. Larson
چکیده

We introduce the concept of the modular function for a shiftinvariant subspace that can be represented by normalized tight frame generators for the shift-invariant subspace and prove that it is independent of the selections of the frame generators for the subspace. We shall apply it to study the connections between the dimension functions of wavelet frames for any expansive integer matrix A and the multiplicity functions for general multiresolution analysis (GMRA). Given a frame mutiresolution analysis (FMRA), we show that the standard construction formula for orthonormal multiresolution analysis wavelets does not yield wavelet frames unless the underlying FMRA is an MRA. A modified explicit construction formula for FMRA wavelet frames is given in terms of the frame scaling functions and the low-pass filters. 1. Preliminaries A frame for a separable Hilbert space H is a sequence of vectors {fj} in H such that there exist constants C1, C2 > 0 such that C1‖f‖2 ≤ ∑ j |〈f, fj〉| ≤ C2‖f‖2 holds for all f ∈ H . If C1 = C2 = 1, we say that {fj} is a normalized tight frame. For a d× d real expansive matrix A (i.e., all the eigenvalues of A are required to have absolute values greater than 1), an A-dilation (orthogonal) wavelet is a single function ψ ∈ L(R) with the property that ψ m, (t) := {|detA| m 2 ψ(At− ) : m ∈ Z, ∈ Z} is an orthonormal basis for L(R). More generally, ψ will be called a normalized tight A-dilation wavelet frame if {ψ m, } forms a normalized tight frame for L(R). In what follows we will use the term “wavelet frame” to denote the normalized tight ones. The dilation operator δA and the translation operator T are defined by: (δAf)(t) = |detA|f(At), (T f)(t) = f(t− ) Received by the editors February 25, 2002 and, in revised form, November 11, 2003. 2000 Mathematics Subject Classification. Primary 42C15, 47B38.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Measure Theoretic Characterization of Multiresolution Frames in Higher Dimensions

We extend some of the classical results of the theory of multiresolution analysis (MRA) frames to Euclidean space Rd; d > 1; and provide relevant examples. In the process, we use the theory of shift-invariant subspaces to bring new insights to the theory of frame multiresolution analysis. In particular, we establish an analogue of the Mallat-Meyer algorithm for multidimensional MRA frames when ...

متن کامل

Frames and Homogeneous Spaces

Let be a locally compact non?abelian group and be a compact subgroup of also let be a ?invariant measure on the homogeneous space . In this article, we extend the linear operator as a bounded surjective linear operator for all ?spaces with . As an application of this extension, we show that each frame for determines a frame for and each frame for arises from a frame in via...

متن کامل

Perturbations and Irregular Sampling Theorems for Frames

This paper gives a perturbation theorem for frames in a Hilbert space which is a generalization of a result by Casazza and Christensen. Then this result is applied to the Perturbation of regular sampling in shift-invariant spaces. Irregular sampling theorems for frames in wavelet subspaces are established for which it is easy to derive explicit formulas and algorithms to calculate the ranges of...

متن کامل

Shift Invariant Spaces and Shift Preserving Operators on Locally Compact Abelian Groups

We investigate shift invariant subspaces of $L^2(G)$, where $G$ is a locally compact abelian group. We show that every shift invariant space can be decomposed as an orthogonal sum of spaces each of which is generated by a single function whose shifts form a Parseval frame. For a second countable locally compact abelian group $G$ we prove a useful Hilbert space isomorphism, introduce range funct...

متن کامل

Generalized shift-invariant systems and frames for subspaces

Given a real and invertible d×d matrix C, we define for k ∈ Zd a generalized translation operator TCk acting on f ∈ L 2(Rd) by (TCkf)(x) = f(x − Ck), x ∈ R . A generalized shift-invariant system is a system of the type {TCjkφj}j∈J,k∈Zd , where {Cj}j∈J is a countable collection of real invertible d×d matrices, and {φj}j∈J ⊂ L 2(Rd). Generalized shift-invariant systems contain the classical wavel...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2004